3.4 Practical Problems

Lecturer: Xue Deng

In practical life, there are many practical optimization problems, how to deal with the practical problems?

Suggest: step-by step method.

Solving Method: Computation steps

Step1 Draw a picture and assign appropriate variables.
Step2 Write a formula for the objective function Q.
Step3
Express Q as a function of a single variable.
Step4 Find the critical points (end, stationary and singular points).

Step5 Determine the maximum or minimum.

If there is a unique stationary point about the objective function, the function value of this point is the desirable maximum (minimum).

Example 1

Find the greatest volume that a right circular cylinder can have
if it is inscribed in a sphere of radius R.
Let the height of cylinder be $2 h$, radius be r, volume be V
First: Objective function

$$
V=\pi r^{2} \cdot 2 h
$$

$$
\text { By } r^{2}+h^{2}=R^{2},
$$

$$
\text { obtain } V=2 \pi\left(R^{2}-h^{2}\right) \cdot h, \quad 0<h<R
$$

Then: Find maximum point

$$
V_{h}^{\prime}=2 \pi\left(R^{2}-3 h^{2}\right)
$$

Example 1

Find the greatest volume that a right circular cylinder can have if it is inscribed in a sphere of radius r.

Let $\quad V_{h}^{\prime}=0$, obtain $h=\frac{R}{\sqrt{3}} \quad$ (delete negative value)

$$
V_{h}^{\prime}=2 \pi\left(R^{2}-3 h^{2}\right)
$$

(Unique stationary point: the maximum volume of the cylinder must be obtained.)
So the unique stationary point $h=\frac{R}{\sqrt{3}}$ is the maximum value point.
The maximum volume: $\quad V=2 \pi\left(R^{2}-\frac{R^{2}}{3}\right) \cdot \frac{R}{\sqrt{3}}=\frac{4 \pi}{3 \sqrt{3}} R^{3}$.

Example 2

The curved triangle area bounded by $\left\{\begin{array}{l}y=0 \\ x=8 \\ y=x^{2}\end{array}\right.$. Find a point $P \in y=x^{2}$ such that
triangle area bounded by the tangent line through $P, y=0$ and $x=8$ is the maximum.
As shown, let the tangent point $P\left(x_{0}, y_{0}\right)$, the tangent line $P T$:

$$
\begin{aligned}
& y-y_{0}=2 x_{0}\left(x-x_{0}\right) \\
& \because y_{0}=x_{0}^{2}, \quad \therefore A\left(\frac{1}{2} x_{0}, 0\right), \quad C(8,0), \quad B\left(8,16 x_{0}-x_{0}^{2}\right)
\end{aligned}
$$

Example 2

$\therefore S_{\triangle A B C}=\frac{1}{2}\left(8-\frac{1}{2} x_{0}\right)\left(16 x_{0}-x_{0}^{2}\right)=x_{0}\left(8-\frac{x_{0}}{2}\right)^{2}\left(0<x_{0}<8\right)$
$S_{x_{0}}^{\prime}=\left(8-\frac{x_{0}}{2}\right)^{2}-x_{0}\left(8-\frac{x_{0}}{2}\right)=\left(8-\frac{x_{0}}{2}\right)\left(8-\frac{3 x_{0}}{2}\right)$
Let $S_{x_{0}}^{\prime}=0$, obtain $x_{0}=\frac{16}{3}, \quad x_{0}=16($ delete $)$.

Unique stationary point

The maximum area is obtained, so point $P\left(\frac{16}{3},\left(\frac{16}{3}\right)^{2}\right)$ is the final result.
So $S\left(\frac{16}{3}\right)=\frac{4096}{27}$ is the maximum area.

Summary of Practical Problems

The steps to solve the practical optimization problems:

Step1 Draw a picture and assign appropriate variables.
Step2
Write a formula for the objective function Q.
Step3
Express Q as a function of a single variable.
Step4 Find the critical points (end, stationary and singular points).
Step5 Determine the maximum or minimum.

Questions and Answers

A rectangular box is to be made from a piece of cardboard
24 inches long and 9 inches wide by cutting out identical
squares from the four corners and turning up the sides.

?
Find the dimensions of the box of maximum volume. What is this volume?
(See book P167)

Questions and Answers

Let x be the width of the square to be cut out

 and V the volume of the resulting box .Then $V=x(9-2 x)(24-2 x)=216 x-66 x^{2}+4 x^{3}(0 \leq x \leq 4.5)$

$$
V_{x}^{\prime}=216-132 x+12 x^{2}=12(x-9)(x-2)
$$

Let $V_{x}^{\prime}=0$, obtain $x=2, x=9$ (delete)
So there are only there critical point: 0,2 and 4.5 .

$$
V(0)=0, V(4.5)=0, V(2)=200
$$

Then $x=2$ is the final result. The volume is 200 .
The box is 20 inches long, 5 inches wide, and 2 inches deep.

